世界七大数学难题,解开一道题奖励一百万美金
很多人都非常的害怕数学,觉得数学很难,但数学早就已经融入了我们的生活,我们生活各处都体现着数学。数学还在不断的发展,但也有难以解决的难题,下面探秘志小编就为大家来揭秘一下世界七大数学难题,每一道题解答出来都可以获得百万美金!
世界七大数学难题
1、庞加莱猜想
2、NP完全问题
3、杨-米尔斯存在性和质量缺口
4、霍奇猜想
5、纳卫尔-斯托可方程的存在性与光滑性
6、BSD猜想
7、黎曼假设
1、庞加莱猜想
如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
在2002年11月和2003年7月之间,俄罗斯的数学家格里戈里·佩雷尔曼在发表了三篇论文预印本,并声称证明了几何化猜想。
在佩雷尔曼之后,先后有2组研究者发表论文补全佩雷尔曼给出的证明中缺少的细节。这包括密西根大学的布鲁斯·克莱纳和约翰·洛特;哥伦比亚大学的约翰·摩根和麻省理工学院的田刚。
2006年8月,第25届国际数学家大会授予佩雷尔曼菲尔兹奖。数学界最终确认佩雷尔曼的证明解决了庞加莱猜想。
2、NP完全问题
例:在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。宴会的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现宴会的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。
生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13717421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。
人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克于1971年陈述的。
3、杨-米尔斯存在性和质量缺口
量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和驻波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。
4、霍奇猜想
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
5、纳卫尔-斯托可方程的存在性与光滑性
起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。
6、BSD猜想
数学家总是被诸如 那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方程是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解)。相反,如果z(1)不等于0。那么只存在着有限多个这样的点。
7、黎曼假设
有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7……等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态。著名的黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
黎曼假设之否认:
其实虽然因素数分布而起,但是却是一个歧途,因为伪素数及素数的普遍公式告诉我们,素数与伪素数由它们的变量集决定的。具体参见伪素数及素数词条。
结语:这世界七大数学难题既然被承认那说明是会有解决的办法的,如果将其解决,那又会对我们的生活带来重大的影响。
刮骨疗伤是真的吗 刮骨疗毒有夸张成分(可信度不高)
刮骨疗伤的主人公是华佗和关羽,关羽的胳膊被人射上毒箭之后,就请来三国时期有名的医生华佗,华佗在没有麻醉药的情况下给关羽进行了刮骨疗毒,其实这件事情的可信度不高,华佗在公元208年死的,而关羽刮骨是在公元219年发生的。一、刮骨疗毒有夸张成分我要新鲜事2023-05-12 02:26:0600002.5亿年前 96%物种离奇消失 学者发现证据(生物灭绝)
2.5亿年前96%的物种消失,中国学者认为是地球臭氧层被破坏产生的连锁反应。地球上的生物发生过几次大的灭绝,尤其是一些大规模的灭绝事件,给人们带来了很多未解的谜题。第五次生物灭绝我要新鲜事2023-05-16 10:49:510000比骁龙8 Gen2更强!高通全新5G Soc曝光:成本很高
快科技6月21日消息,博主数码闲聊站透露,高通即将发布鸡血版骁龙8Gen2移动平台,这颗芯片会有一个全新的正式命名,不叫骁龙8Gen2。数码闲聊站同时指出,这颗鸡血版骁龙8Gen2的成本很高,使用它的机型不多。从目前曝光的信息来看,搭载鸡血版骁龙8Gen2的机型有红魔8SPro(型号为NX729S)、iQOO11S。我要新鲜事2023-07-12 22:01:490000伤口痒是长肉还是感染?受伤了伤口为什么会痒
导语:很多人受伤之后可能感觉伤口有些痒痒的感觉,这到底是怎么回事呢,伤口痒是说明长肉还是在感染呢,探秘志带大家了解下。伤口痒是长肉还是感染一般伤口痒大部分情况下是长肉,只有很少情况下伤口出了问题可能有些恶化,这才是真正的感染。在生物学方面,这就是细胞在不断增加的过程,细胞在生长的时候也在不断释放着能量,所以人们会感觉伤口很痒。我要新鲜事2023-05-10 17:13:540000中国特有古老珍惜鱼类 龙鲨活化石般存在
导语:中国特有古老珍惜鱼类就是龙鲨,又被称为鲟鲨,是一种铁甲鲨鱼类,身体呈暗黑色的纺锤形,表面有比较硬的鳞片,尾巴较长有点歪,虽然体型十分庞大,但是性情却意外的温驯,在距今大约2亿3千万年前的早三叠世就已经存在,堪称活化石般的存在,和探秘志一起看看吧。中国特有古老珍惜鱼类我要新鲜事2023-05-09 04:40:310000